
Abstract Classes and Interfaces

Abstract Methods

• A company has two kinds of employees –
hourly workers who work 40 hours a week at a
certain wage per hour, and salaried workers
who work for an annual salary. The hourly
workers get paid every week; the salaried
workers once a month -- let’s say every fourth
week.

• I want to write a system that has a list of the
company’s employees; each week it runs
through the list looking at each employee’s
data and printing a statement about how
much that person should be paid.

• How do we arrange the classes to make this
easy?

• Answer: Make a parent class Employee , with
subclasses HourlyWorker and SalariedWorker.
The staff list can be an ArrayList<Employee>

• Our payEveryone method will have a loop like
this:

 for (Employee x: staffList)

 (<cast x into its right type).pay()

• If we give Employee a pay() method that the
two subclasses override, then we don’t have
to cast the list variable into appropriate
subclass; the runtime environment will call the
subclass’s method automatically.

• What body do we give the the pay() method in
class Employee?

• Answer: we DON’T give it a body. This
company has no generic employees, so we
should never construct an element of the
employee class. We make pay() an abstract
method of the Employee class, which makes
the class itself abstract.

 The declaration in the abstract class is

 public abstract void pay();

• An abstract class must be extended by
subclasses that override its abstract methods.

• A class is abstract (and must be declared as
such) if it has at least one abstract method.

• See example:

• Class Employee, SalariedWorker,
HourlyWorker and StaffExample

• Advantages of abstract classes:

1. They provide a common parent class for
similar but distinct classes.

2. They force the subclasses to instantiate
essential methods.

3. They allow the compiler to catch things like
typing errors and spelling mistakes.

Interfaces

• Here is a similar problem. I have a bunch of
classes with different properties. A superclass
of them does not make sense. But I still want
to be able to make a list of objects of these
classes and do a common operation, such as
Print, to each of these objects.

• A bad solution is to take each object in the list,
cast it into its native type, and run the
operation on it.

• A better solution is to make an interface that
contains an abstract declaration for the
common method, and to force each class to
implement the interface.

• Here is a simple interface declaration:

public interface Printable {

 void Print();

}

